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Abstract

Purpose – To present a new collocation method for numerically solving partial differential equations
(PDEs) in rectangular domains.

Design/methodology/approach – The proposed method is based on a Cartesian grid and a 1D
integrated-radial-basis-function scheme. The employment of integration to construct the RBF
approximations representing the field variables facilitates a fast convergence rate, while the use of a
1D interpolation scheme leads to considerable economy in forming the system matrix and
improvement in the condition number of RBF matrices over a 2D interpolation scheme.

Findings – The proposed method is verified by considering several test problems governed by
second- and fourth-order PDEs; very accurate solutions are achieved using relatively coarse grids.

Research limitations/implications – Only 1D and 2D formulations are presented, but we believe
that extension to 3D problems can be carried out straightforwardly. Further, development is needed
for the case of non-rectangular domains.

Originality/value – The contribution of this paper is a new effective collocation formulation based
on RBFs for solving PDEs.

Keywords Differential equations, Numerical analysis, Boundary-elements methods

Paper type Research paper

1. Introduction
Radial-basis-function networks (RBFNs) have become one of the main fields of
research in numerical analysis (Haykin, 1999). It has been proved that RBFNs have the
property of universal approximation, i.e. an arbitrary continuous function can be
approximated to a prescribed degree of accuracy by increasing the number of hidden
neurons (Park and Sandberg, 1991). Madych and Nelson (1988, 1990) showed that the
RBF interpolation scheme using multiquadrics (MQ) can offer exponential convergence
rates/spectral accuracy. The application of MQ-RBFNs for the numerical solution of
differential equations has received a great deal of attention over the past 15 years
(Kansa, 1990; Fasshauer, 1997; Zerroukat et al., 1998; Mai-Duy and Tran-Cong, 2001;
Fedoseyev et al., 2002; Power and Barraco, 2002; Cheng et al., 2003; Larsson and
Fornberg, 2003; Sarler et al., 2004). These global methods had considerable success in
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solving a variety of scientific and engineering problems governed by differential
equations.

However, it should be noted that the resultant RBF matrices are dense and their
condition numbers grow rapidly as the number of nodes is increased. To resolve this
problem, several attempts to use local RBF approximations (Shu et al., 2003; Lee et al.,
2003) or to combine RBF and domain decomposition (Dubal, 1994; Kansa and Hon, 2000; Li
and Hon, 2004) have been made. For a local-approximation-based approach, only a small
region associated with a point, a node’s region of influence, is activated to construct the
RBF approximations for that point. The two most common shapes of an influence domain
are circles and rectangles. Using a local procedure, the cost of computation can be modest;
for example, the inversion involved in the construction process is conducted for a series of
smaller matrices rather than for a large matrix. For a domain-decomposition-based
approach, the given analysis domain is divided into a finite number of subdomains. The
original problem can be then reformulated for each subdomain, leading to a series of
coupled smaller subproblems. The solution is required to be continuous and smooth across
the subdomain interfaces. This can be achieved either by overlapping regions (Li and Hon,
2004) or by common data points along the interfaces (Dubal, 1994). Using local
approximations or domain decompositions have the following advantages:

. the resultant coefficient matrices are sparse/block-banded and hence their
solutions are more efficient; and

. it can help prevent the rapid growth of the condition number of the system.

It should also be noted that the performance of the RBF scheme is strongly affected by
the RBF width. To date, there is a lack of mathematical theory for finding appropriate
values of the RBF width. In practice, the RBF width is chosen either by empirical
approaches or by optimization techniques. The latter are expensive, especially for
non-linear problems. Generally, the RBF scheme is more accurate, but less stable with
increasing RBF-width.

Recently, an alternative approach based on integration to construct the RBF
expressions for the interpolation of functions and the solution of differential equations was
proposed (Mai-Duy and Tran-Cong, 2001, 2003). It was found that the indirect/
integration-based RBFN approach (IRBFN) outperforms the direct/differentiation-based
RBFN approach (DRBFN) regarding accuracy and convergence rate over a wide range of
the RBF width. The improvement is attributable to the fact that integration is a smoothing
operation and is more numerically stable.

In this study, a collocation method based on a 1D global IRBF interpolation scheme
for the solution of 2D-partial differential equations (PDEs) is proposed. A rectangular
domain of computation is discretized using a Cartesian grid (for the case of a
non-rectangular domain, prior coordinate transformation can be conducted to produce
a rectangular domain in the computational space). With the use of IRBFNs, one can make
the approximating functions smoother, and generate additional coefficients (integration
constants) that can be used to impose the governing equation on boundaries and/or to
incorporate normal derivative boundary conditions more efficiently. On the other
hand, with the use of a 1D global interpolation scheme, the construction of RBF
approximations for a given point x involve only points that lie on lines intersected at x
and parallel to x- and y-axes, rather than the whole set of grid points. This improves the
conditioning of the system and requires less computational work than the case of using
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a higher-dimensional scheme. One important feature of the present scheme is that it still
maintains the advantages of a global high-order method such as the capability to
achieve a high degree of accuracy using relatively low numbers of nodes. It was reported
that the rapid growth of the conditioning of the system matrix limits the use of a global
2D-RBF collocation method to a few hundred interpolation points. With the present
approach, much larger numbers of nodes (e.g. up to 10,201 nodes in this study) can be
employed. Numerical results show that the proposed method achieves a high degree of
accuracy.

The remainder of the paper is organized as follows. The proposed 1D
integrated-radial-basis-function (1D-IRBF) collocation method for the solution of
second- and fourth-order PDEs is presented and verified in sections 2 and 3, respectively.
The method is then applied to simulate the thermally-driven cavity flow in section 4.
Section 5 gives some concluding remarks.

2. Second-order PDEs
2.1 The IRBF formulation
The domain of interest is discretized using a Cartesian grid, i.e. an array of straight
lines that run parallel to the x- and y-axes. Let Nx and Ny be the numbers of nodes in the
x- and y-directions, respectively. The dependent variable u and its derivatives are
approximated using a 1D-IRBF interpolation scheme. It should be indicated that the 1D
interpolation scheme uses only Nx or Ny nodes (instead of NxNy nodes) to construct the
approximations for a given point, resulting in considerable economy when compared
with an earlier 2D-IRBF interpolation scheme reported in Mai-Duy and Tran-Cong
(2005). The construction process involves two steps, to use :

(1) IRBFNs to approximate the variable u and its derivatives along a straight line;
and

(2) Kronecker tensor products to construct the approximations for derivatives over
a 2D-domain.

2.1.1 One-dimensional formulation. Consider a line in a Cartesian grid, e.g. the line runs
parallel to the x-axis. The dependent variable u along this line is sought in the IRBF
form. The second-order derivative of u is decomposed into RBFs; the RBF network is
then integrated twice to obtain the expressions for the first-order derivative of u and
the solution u itself:

›2uðxÞ

›x 2
¼
XNx

i¼1

w ði Þg ði ÞðxÞ ¼
XNx

i¼1

w ði ÞH ði Þ
½2�ðxÞ; ð1Þ

›uðxÞ

›x
¼
XNx

i¼1

w ði ÞH ði Þ
½1�ðxÞ þ c1; ð2Þ

uðxÞ ¼
XNx

i¼1

w ði ÞH ði Þ
½0�ðxÞ þ c1xþ c2; ð3Þ

where:
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{w ði Þ}
Nx

i¼1 are RBF weights to be determined;

{g ði ÞðxÞ}
Nx

i¼1 are known RBFs;

H ½1�ðxÞ ¼
R
H ½2�ðxÞdx; H ½0�ðxÞ ¼

R
H ½1�ðxÞdx; and c1 and c2 are integration

constants. Here, it is referred to as a second-order 1D-IRBF scheme, denoted by
IRBF-2. It is more convenient to work in physical space than in network-weight space.
The RBF coefficients including two integration constants can be transformed into the
meaningful nodal variable values, based on the following equations:

uðx ð1ÞÞ ¼
XNx

i¼1

w ði ÞH ði Þ
½0�ðx

ð1ÞÞ þ c1x
ð1Þ þ c2; ð4Þ

uðx ð2ÞÞ ¼
XNx

i¼1

w ði ÞH ði Þ
½0�ðx

ð2ÞÞ þ c1x
ð2Þ þ c2; ð5Þ

· · · · · · · · · · · · · · ·

uðx ðNxÞÞ ¼
XNx

i¼1

w ði ÞH ði Þ
½0�ðx

ðNxÞÞ þ c1x
ðNxÞ þ c2; ð6Þ

The above system can be written in a matrix form:

û ¼ H
ŵ

ĉ

 !
; ð7Þ

where H is an Nx £ (Nx þ 2) matrix: û ¼ ðu ð1Þ; u ð2Þ; . . . ; u ðNxÞÞT; ŵ ¼ ðw ð1Þ;
w ð2Þ; . . . ;w ðNxÞÞT; and ĉ ¼ ðc1; c2Þ

T.
One difference between 1D integrated- and differentiated-RBF interpolation

schemes is that the former possesses a larger set of expansion coefficients owing to the
presence of two integration constants c1 and c2. The present conversion schemes can be
thus developed into two directions.

2.1.2 Non-square conversion matrix (NSCM). The direct use of equation (7) leads to
an underdetermined system of equations. The associated matrix is referred to as the
conversion matrix, denoted by C (C ¼ H). The pseudo inverse of C can be found
using the SVD technique. It is noted that the purpose of using SVD here is to provide a
solution whose norm is the smallest in the least-squares sense:

û ¼ H
ŵ

ĉ

 !
¼ C

ŵ

ĉ

 !
; ð8Þ

ŵ

ĉ

 !
¼ C21û: ð9Þ

2.1.3 Square conversion matrix (SCM). One can add two additional equations of
the form:
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f 1 ¼
XNx

i¼1

w ði ÞH ði Þ
½†� þ c1a1 þ c2b1; ð10Þ

f 2 ¼
XNx

i¼1

w ði ÞH ði Þ
½‡� þ c1a2 þ c2b2; ð11Þ

or:

f̂ ¼ K
ŵ

ĉ

 !
ð12Þ

to equation (7). The conversion system can be written as:

û

f̂

 !
¼

H

K

" #
ŵ

ĉ

 !
¼ C

ŵ

ĉ

 !
: ð13Þ

The conversion matrix C becomes square and its inverse can be computed by using the
LU decomposition:

ŵ

ĉ

 !
¼ C21

û

f̂

 !
: ð14Þ

It is widely observed that the RBF approximations have a tendency to produce larger
errors near boundaries. Fedoseyev et al. (2002) developed an MQ-RBF collocation
method with PDE collocation on the boundaries; numerical results indicated a
considerable improvement in accuracy. Motivated by these results, the two extra
equations (10) and (11) can be utilized here to satisfy the governing equation at both
ends of the line: x (1) and x ðNxÞ. If the Neumann boundary condition rather than the
Dirichlet condition is given, these equations can be used to represent normal derivative
boundary conditions; imposition of the governing equation on the boundaries is carried
out at a later stage of constructing a system matrix. All fi, H[· ], ai and bi with i ¼ (1, 2)
in equations (10) and (11) are known quantities. However, their explicit forms/values
depend on the problem to be solved; they will be presented in some detail in section
“Numerical results”. A distinct difference between the differentiation- and
integration-based formulations is that the governing equation is forced to be
satisfied exactly on the boundaries by means of fictitious points inside/outside domain
for the former and by integration constants for the latter.

In the following discussion, only the SCM version is considered since the NSCM
system (8) can be obtained from the SCM system (13) by simply setting matrix K and
vector f̂ to null.

By substituting equation (14) into equations (1) and (2), the second- and first-order
derivatives of the variable u will be expressed in terms of nodal variable values:

›2uðxÞ

›x 2
¼ H ð1Þ

½2�ðxÞ;H
ð2Þ
½2�ðxÞ; . . . ;H

ðNxÞ
½2� ðxÞ; 0; 0

� �
C21

û

f̂

 !
; ð15Þ
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›uðxÞ

›x
¼ H ð1Þ

½1�ðxÞ;H
ð2Þ
½1�ðxÞ; . . . ;H

ðNxÞ
½1� ðxÞ; 1; 0

� �
C21

û

f̂

 !
; ð16Þ

or:

›2uðxÞ

›x 2
¼ D2xûþ k2x; ð17Þ

›uðxÞ

›x
¼ D1xûþ k1x; ð18Þ

where k2x and k1x are scalars whose values depend on f1 and f2.
Application of equations (17) and (18) to every collocation point on the line yields:

›2ub
›x 2

¼ D̂2xûþ k̂2x; ð19Þ

›ub
›x

¼ D̂1xûþ k̂1x; ð20Þ

where D̂2x and D̂1x are known matrices of dimension Nx £ Nx, and k̂2x and k̂1x are
known vectors of length Nx.

Similarly, along a vertical line, the values of the second- and first-order derivatives
of u with respect to y at the collocation points can be given by:

›2ub
›y 2

¼ D̂2yûþ k̂2y; ð21Þ

›̂u

›y
þ D̂1yûþ k̂1y: ð22Þ

2.1.4 Two-dimensional formulation. Assuming that the grid points are numbered
from bottom to top and from left to right, one can write the values of the derivatives of
u over the whole domain by using Kronecker tensor products as follows:

~›2u

›x 2
¼ ðD̂2x^IyÞ~uþ ~k2x ¼ D̂2x ~uþ ~k2x; ð23Þ

~›u
›x

¼ ðD̂1x^IyÞ~uþ ~k1x ¼ D̂1x ~uþ ~k1x; ð24Þ

~›2u

›y2
¼ ðIx^D̂2yÞ~uþ ~k2y ¼ ~D2y ~uþ ~k2y; ð25Þ

~›u
›y

¼ ðIx^D̂1yÞ~uþ ~k1y ¼ ~D1y ~uþ ~k1y; ð26Þ
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where Ix and Iy are the identity matrices of dimension Nx £ Nx and Ny £ Ny,
respectively; ~k2x; ~k1x; ~k2y and ~k1y are known vectors of lengthNxNy; ~D2x; ~D1x; ~D2y and
~D1y are known matrices of dimension NxNy £ NxNy; and ~u ¼ ðu ð1Þ; u ð2Þ; . . . ; u ðNxNyÞÞT:

2.2 Numerical results
The accuracy of an approximation scheme is measured by means of the discrete
relative L2 error defined as:

N e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðu

ði Þ
e 2 u ði ÞÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðu
ði Þ
e Þ2

q ; ð27Þ

where N is the number of collocation points; and ue and u are the exact and computed
solutions, respectively. The present study employs MQ whose form is:

g ði ÞðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx 2 c ði Þk

2
þ a ði Þ2

q
; ð28Þ

where c is the centre, a is the RBF width and k · k denotes a Euclidean norm. The width
of the ith MQ-RBF, a (i ), is simply chosen to be the minimum distance from the ith
centre to its neighbours.

2.2.1 Problem 1. Consider the following Poisson equation:

72u ¼ b ¼ 28p 2sinð2pxÞsinð2pyÞ: ð29Þ

An approximate solution is sought in the unit square domain, 0 # x, y # 1. The exact
solution is given by:

ue ¼ sinð2pxÞsinð2pyÞ: ð30Þ

Ten uniform grids, 11 £ 11; 21 £ 21; . . . ; 101 £ 101; are employed. A comparative
study of the accuracy of the present 1D-IRBF method between the two versions, NSCM
and SCM, is carried out for two different types of the boundary condition, namely {u}
and {u; ›u=›n}.

2.2.2 Dirichlet boundary condition. Along the two vertical sides, the extra
information fi, which is used for computing the derivatives of u with respect to x, is
taken to be:

f 1ðx ¼ 0; yÞ ¼
›2u

›x 2
ð0; yÞ ¼ bð0; yÞ2

›2u

›y 2
ð0; yÞ ¼ 0; ð31Þ

f 2ðx ¼ 1; yÞ ¼
›2u

›x 2
ð1; yÞ ¼ bð1; yÞ2

›2u

›y 2
ð1; yÞ ¼ 0; ð32Þ

or: XNx

i¼1

w ði ÞH ði Þ
½2�ð0Þ ¼ 0; ð33Þ

XNx

i¼1

w ði ÞH ði Þ
½2�ð1Þ ¼ 0: ð34Þ
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Similarly, along the two horizontal sides, the extra information fi, which is used for
computing the derivatives of u with respect to y, is defined as:

f 1ðx; y ¼ 0Þ ¼
›2u

›y 2
ðx; 0Þ ¼ bðx; 0Þ2

›2u

›x 2
ðx; 0Þ ¼ 0; ð35Þ

f 2ðx; y ¼ 1Þ ¼
›2u

›y 2
ðx; 1Þ ¼ bðx; 1Þ2

›2u

›x 2
ðx; 1Þ ¼ 0: ð36Þ

Applying the governing equation (29) at the interior points (ip) yields:

ð ~D2x þ ~D2yÞip ~u ¼ ðbÞip 2 ð~k2xÞip 2 ð~k2yÞip: ð37Þ

Making use of the Dirichlet boundary condition of the problem, a determinate system
of equations is obtained which can be solved by Gaussian elimination.

Results concerning the relative L2 error are shown in Figure 1, which indicates the
rapid improvement in accuracy with increasing density for both versions. The SCM
version is more accurate, but converges slightly slower than the NSCM version.

Figure 1.
Second-order PDE,
Dirichlet boundary
conditions: relative L2

errors obtained by the
proposed 1D-IRBF method
and the classical DRBFN
method

10–110–210–6

10–5

10–4

10–3

10–2

10–1

1D-DRBFN
2D-DRBFN
1D-IRBFN-SCM
1D-IRBFN-NSCM

Grid spacing

Notes: The former outperforms the latter regarding accuracy and convergence. It is noted that not
only 2D- but also 1D-interpolation schemes are employed for the DRBFN method

N
e(

u)
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The present results are also compared with those obtained by the classical DRBFN
method (Figure 1). The DRBFN method that is based on a 1D interpolation scheme is
also implemented here. The 1D- and 2D-DRBF methods use the same network
parameters (e.g. the number of collocation points, their locations and the RBF widths)
as the proposed 1D-IRBF method. It can be seen that the proposed method outperforms
the 1D- and 2D-DRBF methods regarding accuracy and convergence.

In comparison with the 2D-IRBF method, Table I shows that for each version (SCM
and NSCM), the 2D-IRBF method is more accurate than the 1D-IRBF method. It is
interesting to note that the accuracy of the 1D-IRBF method with SCM is superior to
that of the 2D-IRBF method with NSCM. The 2D method requires much more
computational effort than the 1D method. For example, the inversion is conducted for
matrices of dimensions about Nx £ Nx or Ny £ Ny for the 1D method, but of dimensions
NxNy £ NxNy for the 2D method.

2.2.3 Dirichlet and Neumann boundary conditions. The Neumann boundary
conditions are imposed on the two vertical sides, while the Dirichlet conditions are
specified along the two horizontal sides. Special attention here is given to the
implementation of the Neumann boundary condition. The two additional equations (10)
and (11) can take the form:

f 1ðx ¼ 0; yÞ ¼
›u

›x
ð0; yÞ ¼ 2p sinð2pyÞ; ð38Þ

f 2ðx ¼ 1; yÞ ¼
›u

›x
ð1; yÞ ¼ 2p sinð2pyÞ; ð39Þ

XNx

i¼1

w ði ÞH ði Þ
½1�ð0Þ þ c1 ¼ 2p sinð2pyÞ; ð40Þ

XNx

i¼1

w ði ÞH ði Þ
½1�ð1Þ þ c1 ¼ 2p sinð2pyÞ: ð41Þ

For the SCM version, the governing equation (29) is forced to be satisfied not only at the
ip but also at the 2(Ny 2 2) boundary points on the two vertical sides. For the NSCM

2D-IRBFN 1D-IRBFN
Grid NSCM SCM NSCM SCM

11 £ 11 3.6 (23) 8.8 (24) 3.9 (23) 1.0 (23)
21 £ 21 3.6 (24) 8.6 (25) 4.8 (24) 1.3 (24)
31 £ 31 9.3 (25) 2.1 (25) 1.4 (24) 4.4 (25)
41 £ 41 3.5 (25) 8.0 (26) 5.9 (25) 2.0 (25)
51 £ 51 1.6 (25) 3.7 (26) 3.0 (25) 1.1 (25)
61 £ 61 8.7 (26) 2.1 (26) 1.7 (25) 7.0 (26)
71 £ 71 5.1 (26) 1.5(26) 1.0 (25) 4.7 (26)

Notes: For each version (SCM and NSCM), the 2D-IRBF method is more accurate than 1D-IRBF
method. It is interesting to note that the accuracy of the 1D-IRBF method with SCM is superior to that
of the 2D-IRBF method with NSCM. The 2D-IRBF method requires much more computational effort
than the 1D-IRBF method. a (2b) means a £ 102b

Table I.
Second-order PDE,
Dirichlet boundary

conditions: relative L2

errors obtained by the
2D- and 1D-IRBF

methods
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version, the governing equation (29) is applied at the ip and the Neumann boundary
conditions are enforced explicitly by adding some additional equations to the system.
After introducing the Dirichlet boundary condition of the problem, for both versions, a
square algebraic system of dimension (NxNy £ 2Nx) £ (NxNy £ 2Nx) is obtained for the
unknown nodal values of u inside the domain and on the boundaries of the Neumann
boundary condition.

Figure 2 shows the convergence behaviour of the present method using NSCM and
SCM. It is clear that both versions have essentially the same convergence rates, but the
latter produces a higher degree of accuracy. Imposition of the Neumann boundary
condition through the conversion process is recommended for use because of its
superior accuracy and its straightforward implementation.

3. Fourth-order PDEs
One distinct feature of problems governed by fourth-order PDEs is that there are two
required values of the variable at each boundary point. For the conventional
implementation of multiple boundary conditions, fictitious points are introduced
outside/inside the domain (the fictitious-point technique) or the differential equations
are collocated at a smaller number of ip (the node-reduction technique). The interested
reader is referred to references Shu (2000), Shu et al. (2000) and Chen et al. (2000) for
more detailed discussion of this topic. In the present work, the imposition of multiple
boundary conditions is simply conducted by means of integration constants; its
performance is compared with that of the node-reduction technique. The details of

Figure 2.
Second-order PDE,
Dirichlet and Neumann
boundary conditions:
comparison of the
accuracy of the 1D-IRBF
method between the two
versions

Square conversion matrix
Non-square conversion matrix

10–110–2
10–5

10–4

10–3

10–2

10–1

Grid spacing

N
e(

u)
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implementing multiple boundary conditions using integration constants were reported
in Mai-Duy (2005) and Mai-Duy and Tanner (2005).

For the sake of simplicity, the following discussion is given to the case of
biharmonic equations of the form:

›4u

›x 4
þ 2

›4u

›x 2›y 2
þ

›4u

›y 4
¼ bðx; yÞ ð42Þ

in the rectangular domain, subject to the boundary conditions u and ›u=›n along the
boundaries.

The process of deriving the 1D-IRBF formulation for fourth-order PDEs is similar to
that for second-order PDEs. However, the corresponding equations involve more
terms. Furthermore, special attention needs to be paid to the treatment of mixed partial
derivatives, e.g. ›4u=›x 2›y 2. Notations used in this section and in the previous one
have similar meanings.

3.1 The IRBF formulation
3.1.1 One-dimensional formulation. The variable u and its derivatives along a grid line
that runs parallel to the xaxis can be approximated by:

›4uðxÞ

›x 4
¼
XNx

i¼1

w ði Þg ði ÞðxÞ ¼
XNx

i¼1

w ði ÞH ði Þ
½4�ðxÞ; ð43Þ

›3uðxÞ

›x 3
¼
XNx

i¼1

w ði ÞH ði Þ
½3�ðxÞ þ c1; ð44Þ

›2uðxÞ

›x 2
¼
XNx

i¼1

w ði ÞH ði Þ
½2�ðxÞ þ c1xþ c2; ð45Þ

›uðxÞ

›x
¼
XNx

i¼1

w ði ÞH ði Þ
½1�ðxÞ þ c1

x 2

2
þ c2xþ c3; ð46Þ

uðxÞ ¼
XNx

i¼1

w ði ÞH ði Þ
½0�ðxÞ þ c1

x 3

6
þ c2

x 2

2
þ c3xþ c4; ð47Þ

in which the fourth-order derivative of the variable u is decomposed into RBFs. Here it
is referred to as a fourth-order 1D-IRBF scheme, denoted by IRBF-4.

Some relevant matrices and vectors to be used for the conversion process are given
below:
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H ¼

H ð1Þ
½0�ðx

ð1ÞÞ H ð2Þ
½0�ðx

ð1ÞÞ · · · H ðNxÞ
½0� ðx ð1ÞÞ x ð1Þ3=6 x ð1Þ2=2 x ð1Þ 1

H ð1Þ
½0�ðx

ð2ÞÞ H ð2Þ
½0�ðx

ð2ÞÞ · · · H ðNxÞ
½0� ðx ð2ÞÞ x ð2Þ3=6 x ð2Þ2=2 x ð2Þ 1

· · · · · · · · · · · · · · · · · · · · · · · ·

H ð1Þ
½0�ðx

ðNxÞÞ H ð2Þ
½0�ðx

ðNxÞÞ · · · H ðNxÞ
½0� ðx ðNxÞÞ x ðNxÞ3=6 x ðNxÞ2=2 x ðNxÞ 1

26666664

37777775

ŵ ¼

w ð1Þ

w ð2Þ

· · ·

w ðNxÞ

0BBBBB@

1CCCCCA; ĉ

c1

c2

c3

c4

0BBBBB@

1CCCCCA; û ¼

u ð1Þ

u ð2Þ

· · ·

u ðNxÞ

0BBBBB@

1CCCCCA
3.1.2 Non-square conversion matrix. The unknown expansion coefficients can be
converted into the nodal variable values according to the following relation:

û ¼ H
ŵ

ĉ

 !
¼ C

ŵ

ĉ

 !
; ð48Þ

ŵ

ĉ

 !
¼ C21û: ð49Þ

3.1.3 Square conversion matrix. The presence of four integration constants allows
the addition of four extra equations to the conversion system. Using information on the
governing equation and normal derivative boundary conditions at both ends of the
line, the additional matrix and vector can be generated as follows:

K ¼

H ð1Þ
½1�ðx

ð1ÞÞ H ð2Þ
½1�ðx

ð1ÞÞ · · · H ðNxÞ
½1� ðx ð1ÞÞ x ð1Þ2=2 x ð1Þ 1 0

H ð1Þ
½1�ðx

ðNxÞÞ H ð2Þ
½1�ðx

ðNxÞÞ · · · H ðNxÞ
½1� ðx ðNxÞÞ x ðNxÞ2=2 x ðNxÞ 1 0

H ð1Þ
½4�ðx

ð1ÞÞ H ð2Þ
½4�ðx

ð1ÞÞ · · · H ðNxÞ
½4� ðx ð1ÞÞ 0 0 0 0

H ð1Þ
½4�ðx

ðNxÞÞ H ð2Þ
½4�ðx

ðNxÞÞ · · · H ðNxÞ
½4� ðx ðNxÞÞ 0 0 0 0

266666664

377777775;

f̂ ¼

›u
›x
ðx ð1ÞÞ

›u
›x
ðx ðNxÞÞ

bðx ð1ÞÞ2 2 ›4u
›x 2y 2 ðx

ð1ÞÞ2 ›4u
›y 4 ðx

ð1ÞÞ

bðx ðNxÞÞ2 2 ›4u
›x 2y 2 ðx

ðNxÞÞ2 ›4u
›y 4 ðx

ðNxÞÞ

0BBBBBBB@

1CCCCCCCA:

The conversion process thus becomes:
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û

f̂

 !
¼

H

K

" #
ŵ

ĉ

 !
¼ C

ŵ

ĉ

 !
; ð50Þ

ŵ

ĉ

 !
¼ C21

û

f̂

 !
: ð51Þ

Substitution of equation (51) into equations (43)-(46) yields:

›4uðxÞ

›x 4
¼ H ð1Þ

½4�ðxÞ;H
ð2Þ
½4�ðxÞ; . . . ;H

ðNxÞ
½4� ðxÞ; 0; 0; 0; 0

� �
C21

û

f̂

 !
; ð52Þ

›3uðxÞ

›x 3
¼ H ð1Þ

½3�ðxÞ;H
ð2Þ
½3�ðxÞ; . . . ;H

ðNxÞ
½3� ðxÞ; 1; 0; 0; 0

� �
C21

û

f̂

 !
; ð53Þ

›2uðxÞ

›x 2
¼ H ð1Þ

½2�ðxÞ;H
ð2Þ
½2�ðxÞ; . . . ;H

ðNxÞ
½2� ðxÞ; x; 1; 0; 0

� �
C21

û

f̂

 !
; ð54Þ

›uðxÞ

›x
¼ H ð1Þ

½1�ðxÞ;H
ð2Þ
½1�ðxÞ; . . . ;H

ðNxÞ
½1� ðxÞ;

x 2

2
; x; 1; 0

� �
C21

û

f̂

 !
: ð55Þ

The values of the ith-order derivative of u (i ¼ {1, 2, 3, 4}) at the grid points along a
horizontal line can be computed by:

›iub
›x i

¼ D̂
IV

ix

û

f̂

 !
; i ¼ {1; 2; 3; 4}; ð56Þ

where the superscript IV is used to indicate that D̂ix is obtained using the IRBF-4
scheme; and D̂

IV

ix is a known matrix of dimension Nx £ (Nx þ 4); and:

›iub
›x i

¼
›iu ð1Þ

›x i
;
›iu ð2Þ

›x i
; . . . ;

›iu ðNxÞ

›x i

� �T

:

Expression (56) can be rewritten as:

›iub
›x i

¼
^

D1
IV

ix ûþ
^

D2
IV

ix f̂; ð57Þ

where
^

D1
IV

ix and
^

D2
IV

ix are matrices that are formed by the first Nx columns and the last
four columns of the matrix D̂

IV

ix , respectively. Unlike the case of second-order PDEs, the
extra information vector f̂ (components f3 and f4) contains some unknown values – the
mixed partial derivative ›4u=›x 2›y 2 at the two boundary points. The treatment is as
follows. These unknown values will be replaced by linear combinations of nodal values
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of the variable u (the detailed expression of ›4u=›x 2›y 2 will be given in section 3.1.4).
In the same way, one can obtain the vector of the values of the ith-order derivative of u
with respect to y along a vertical line.

3.1.4 Two-dimensional formulation. Making use of the following expression:

›4u

›2x›2y
¼

1

2

›2

›x 2

›2u

›y 2

� �
þ

›2

›y 2

›2

›x 2

� �� �
; ð58Þ

the mixed fourth-order partial derivative can be computed by the 1D-IRBF-2 scheme
with the extra information fi being the values of the first-order derivatives at the
boundary points which are given or can be computed easily. Expression (58) can be
rewritten as:

~›4u

›x 2›y 2
¼

1

2
~D2x

~›2u

›y 2
þ ~k2x þ ~D2y

~›2u

›x 2
þ ~k2y

 !
; ð59Þ

¼
1

2
ð ~D2x

~D2y þ ~D2y
~D2xÞ~uþ ~k4xy; ð60Þ

¼ ~D4xy ~uþ ~k4xy; ð61Þ

where ~D2x and ~D2y are known matrices obtained from equations (23) and (25); ~k4xy is a
known vector of length NxNy; ~D4xy is a known matrix of dimension NxNy £ NxNy; and:

~›4u

›x 2›y 2
¼

›4u

›x 2›y 2

ð1Þ

;
›4u

›x 2›y 2

ð2Þ

; . . . ;
›4u

›x 2›y 2

ðNxNyÞ
 !T

:

It can be seen that the mixed fourth-order partial derivative of the variable u is now
expressed in terms of nodal variable values. Using these results to represent the
components f3 and f4, one can now extend the approximations for ›iu=›x i (equation
(57)) to a 2D domain by means of Kronecker tensor products. Their final forms can be
written as:

~›iu
›x i

¼ ~D
IV

ix ~uþ
~k

IV

ix ð62Þ

~›iu
›y i

¼ ~D
IV

iy ~uþ
~k

IV

iy ð63Þ

where i ¼ {1, 2, 3, 4}; ~k
IV

ix and ~k
IV

iy are known vectors of length NxNy; and ~D
IV

ix and ~D
IV

iy
are known matrices of dimension NxNy £ NxNy.

3.2 Numerical results
A biharmonic Dirichlet problem is considered here to verify the 1D-IRBF formulation.

3.2.1 Problem 2. Consider the biharmonic equation:

74u ¼ 64p 4sinð2pxÞsinð2pyÞ ð64Þ

in the domain 0 # x,y # 1, subject to the boundary conditions:
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u ¼ 0 along the boundaries;

›u

›x
¼ 2p sinð2pyÞ x ¼ 0; x ¼ 1

›u

›y
¼ 2p sinð2pxÞ y ¼ 0; y ¼ 1

The exact solution is given by:

veðx; yÞ ¼ sinð2pxÞsinð2pyÞ: ð65Þ

A number of uniform grids, 6 £ 6; 11 £ 11; . . . ; and 71 £ 71; are employed. In
forming the system matrix, the SCM version allows the biharmonic equation (64) to be
collocated at every interior point. For the NSCM version, it is necessary to reduce the
number of ip used for equation (64) in order to impose the boundary conditions ›u=›n;
these ip chosen here for collocating the biharmonic equation are (xi, yj) with
3 # i # Nx 2 2 and 3 # j # Ny 2 2. A comparison of the accuracy of the present
method between the two versions is shown in Figure 3. The NSCM version does not
perform as well, probably due to the fact that the governing equation is not forced to be
satisfied exactly at every interior point. For the SCM version, a high degree of accuracy
and fast convergence are achieved.

Figure 3.
Biharmonic problem:

comparison of the
accuracy of the 1D-IRBF
method between the two

versions

Square conversion matrix
Non-square conversion matrix

10010–2 10–110–6

10–5

10–4

10–3

10–2

10–1

100

101

Grid spacing

N
e(

u)

A collocation
method

179



The question here is whether the accuracy of the NSCM approach is improved when
one tries to impose the normal derivative boundary conditions through the conversion
process. In this case, the dimension of conversion matrices is (Nx þ 2) £ (Nx þ 4).
Table II reveals that this implementation leads to a significant improvement in
accuracy over the traditional node-reduction technique.

Numerical results show that both SCM and NSCM versions of the proposed
1D-IRBF method produce very accurate results. The former requires the inversion of
underdetermined matrices, while the latter involves the inversion of square matrices.
Fortunately, these calculations are conducted in 1D-domains only, and hence they do
not add greatly to the computational cost. The classical DRBFN method does not
require such inversions, but its approximations involve all data points. It should be
emphasized the final matrix obtained by the proposed method has the same dimension
as that yielded by the DRBFN method.

For the SCM version, to impose the governing equation on the boundaries, the
values of relevant derivatives at the boundary points should be known or should be
written in terms of nodal variable values. It is difficult to meet this requirement when
extending the SCM version to the case of irregular domains. One possible way to
overcome these difficulties is to apply a technique by Sanmiguel-Rojas et al. (2005) to
generate a non-uniform Cartesian grid in which all the boundary nodes are regular
nodes of the grid. For the NSCM version, one does not need to concern these issues
when extending it to irregular domains.

4. Natural convection flow in a square slot
The proposed method is applied here to simulate the thermally-driven cavity flow in a
square slot. For this problem, the governing equation presents the coupling of
momentum (fourth-order PDE, streamfunction formulation) and energy (second-order
PDE) equations. Very thin boundary layers are formed at high values of the Rayleigh

Grid NSCM1 NSCM2

6 £ 6 2.9 (0) 9.6 (24)
11 £ 11 4.5 (21) 6.3 (25)
16 £ 16 3.2 (21) 2.5 (25)
21 £ 21 2.8 (21) 1.7 (25)
26 £ 26 2.7 (21) 1.2 (25)
31 £ 31 2.6 (21) 9.3 (26)
36 £ 36 2.6 (21) 7.0 (26)
41 £ 41 2.6 (21) 5.5 (26)
46 £ 46 2.5 (21) 4.4 (26)
51 £ 51 2.5 (21) 3.6 (26)
56 £ 56 2.5 (21) 3.0 (26)
61 £ 61 2.5 (21) 2.5 (26)
66 £ 66 2.5 (21) 2.2 (26)
71 £ 71 2.5 (21) 1.8 (26)

Notes: For NSCM1, the multiple boundary conditions are implemented by the node-reduction
technique (collocating the governing equation at a smaller number of ip), while for NSCM1, they are
imposed by means of integration constants. The latter outperforms the former regarding accuracy and
convergence rate. a (2b) means a £ 102 b

Table II.
Fourth-order PDE:
relative L2 errors
obtained by the NSCM1
and NSCM2 approaches
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number, thereby making the numerical simulation difficult. This problem provides a
good means for testing and validating new numerical methods. From the literature, a
range of the Rayleigh number from 103 to 106 is usually employed for the verification of
numerical methods. It will be shown that converged solutions for higher Rayleigh
numbers are achieved with the present method, and the obtained RBF results are in
very good agreement with the spectral ones. The non-dimensional equations governing
the temperature T and streamfunction c behaviour can be written as:

›T

›t
þ

›c

›y

›T

›x
2

›c

›x

›T

›y

� �
¼

1ffiffiffiffiffiffiffiffiffiffiffiffi
Ra Pr

p
›2T

›x 2
þ

›2T

›y 2

� �
; ð66Þ

2
›

›t

›2c

›x 2
þ

›2c

›y 2

� �
þ

›c

›y

›3c

›x 3
þ

›2

›y 2

›c

›x

� �� �
2

›c

›x

›2

›x 2

›c

›y

� �
þ

›3c

›y 3

� �
¼ 2

ffiffiffiffiffiffiffi
Pr

Ra

r
›4c

›x 4
þ

›2

›x 2

›2c

›y 2

� �
þ

›2

›y 2

›2c

›x 2

� �
þ

›4c

›y 4

� �
þ

›T

›x
;

ð67Þ

where Ra and Pr are the Rayleigh number and the Prandtl number, respectively. The
variables are normalized here using reference quantities recommended by Ostrach
(1988) for the case of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra=Pr

p
. 1 and Pr , 1. These non-dimensional equations are

written in detail in order to show how their derivative terms are computed, e.g. mixed
third-order partial derivatives are determined through relevant second- and first-order
derivatives. A square cavity of a unit size, containing a fluid of Pr ¼ 0.71, is
considered. Non-slip boundary conditions (c ¼ 0 and ›c=›n) are imposed along all the
walls. The thermal boundary conditions are T ¼ 0.5 and T ¼ 20.5 (isothermal) along
the left and right walls, respectively, and ›T=›y ¼ 0 (adiabatic) along the bottom and
top walls. The benchmark solutions for this problem can be found in de Vahl Davis
(1983) for 103 # Ra # 106 and in Le Quere (1991) for Ra $ 106. The former used
second-order, finite-central-difference approximations and a Richardson extrapolation
scheme, while the latter employed a pseudo-spectral Chebyshev algorithm using the
spatial resolution up to a 128 £ 128 polynomial expansion.

The present solution procedure involves the following steps:

(1) Guess a set of initial conditions: T, c and their spatial derivatives.

(2) Discretize in time using a first-order accuracy finite-difference scheme, where
the diffusive and convective terms are treated implicitly and explicitly,
respectively.

(3) Discretize in space using 1D-IRBF schemes, solve the:
. energy equation (66) for T; and
. momentum equation (67) for c.

(4) Check to see whether the solution has reached a steady state:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ckþ1

i 2 ck
i

� 	2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ckþ1

i

� 	2
q , 1; ð68Þ

where k is the time level, 1 is the tolerance and N is the number of collocation
points.
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(5) If it is not satisfied, advance time step and repeat from step 2. Otherwise, stop
the computation and output the results.

Normal derivative boundary conditions ›c=›n and ›T=›y are imposed by means of
integration constants. The energy equation (second-order PDE) is collocated not only at
the ip but also at the boundary points on the bottom and top walls.

A range of Ra ¼ {105, 106, 107} is considered here. The computed solution at the
lower and nearest value of Ra is taken to be the initial solution. Seven uniform grids,
namely 21 £ 21; 31 £ 31; . . . ; 81 £ 81; are employed to study the convergence
behaviour of the method. Time steps are chosen to be 0.1 for Ra ¼ 105, 0.05 for
Ra ¼ 106 and 0.01 for Ra ¼ 107.

The following quantities are of interest to this type of flow, the:
. maximum horizontal velocity, umax on the vertical mid-plane of the cavity and its

location;
. maximum vertical velocity, vmax on the horizontal mid-plane of the cavity and its

location; and
. average Nusselt number throughout the cavity:

�Nu ¼

Z 1

0

NuðxÞdx ð69Þ

NuðxÞ ¼

Z 1

0

uT 2
›T

›x

� �
dy: ð70Þ

The present velocity components are related to the corresponding benchmark solutions
(de Vahl Davis, 1983) according to the relation:ffiffiffiffiffiffiffiffiffiffiffiffi

Ra Pr
p

ðu; vÞpresent ¼ ðu; vÞbenchmark:

The results obtained are given in Tables III-V, which show the rapid improvement in
accuracy as the density increases. Although very sharp gradients are formed at high
values of the Rayleigh number, the present method achieves very accurate results. For
example, the maximum error is less than 0.2 per cent for Ra ¼ 107 using a grid of
81 £ 81.

Grid
umax

(error percentage) y
vmax

(error percentage) x

�Nu

(error percentage)

21 £ 21 34.96 (0.66) 0.855 68.73 (0.20) 0.066 4.492 (0.60)
31 £ 31 34.87 (0.40) 0.855 68.76 (0.25) 0.066 4.512 (0.16)
41 £ 41 34.80 (0.20) 0.855 68.69 (0.15) 0.066 4.516 (0.07)
Benchmark
(de Vahl Davis, 1983) 34.73 0.855 68.59 0.066 4.519

Table III.
Natural convection,
Ra ¼ 105
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Figure 4 shows the streamlines, isotherms and iso-vorticity lines of the flow at
Ra ¼ 107 using a grid of 81 £ 81. Every plot contains 17 contour lines whose values
vary linearly from the minimum to maximum values, and they look reasonable when
compared to the benchmark solutions.

5. Concluding remarks
This paper reports a collocation method based on a 1D-IRBF interpolation scheme for
the solution of second- and fourth-order PDEs in rectangular domains. The use of
integrated RBFs allows the:

. normal derivative boundary condition to be incorporated more efficiently; and

. exact satisfaction of PDEs not-only at the ip, but also at the boundary points.

The imposition of normal derivative boundary conditions through the conversion
process is recommended for use. On the other hand, the employment of a 1D
interpolation scheme instead of 2D interpolation scheme permits relatively large
numbers of data points to be employed. The present 1D global IRBF scheme is
demonstrated on a number of test cases, including the benchmark natural convection
problem; a very high degree of accuracy is achieved using relatively coarse grids.
Extension of the proposed method to the case of non-rectangular domains is currently
underway, and it will be reported in future work.

Grid
umax

(error percentage) y
vmax

(error percentage) x

�Nu

(error percentage)

51 £ 51 65.04 (0.32) 0.850 220.96 (0.16) 0.038 8.816 (0.10)
61 £ 61 64.98 (0.23) 0.850 220.83 (0.10) 0.038 8.819 (0.07)
71 £ 71 64.94 (0.17) 0.850 220.74 (0.06) 0.038 8.820 (0.06)
81 £ 81 64.91 (0.12) 0.850 220.69 (0.04) 0.038 8.821 (0.05)
Benchmark
(de Vahl Davis, 1983) 64.63 0.850 219.36 0.038 8.800
Benchmark
(Le Quere, 1991) 64.83 0.850 220.6 0.038 8.825

Note: It is noted that the percentage errors presented here are relative to the spectral results of
Le Quere (1991)

Table IV.
Natural convection,

Ra ¼ 106

Grid
umax

(error percentage) y
vmax

(error percentage) x

�Nu

(error percentage)

51 £ 51 143.9 (3.16) 0.885 680.8 (2.63) 0.021 16.126 (2.40)
61 £ 61 146.9 (1.14) 0.881 693.1 (0.87) 0.021 16.370 (0.93)
71 £ 71 148.2 (0.27) 0.879 698.0 (0.17) 0.021 16.463 (0.36)
81 £ 81 148.8 (0.13) 0.878 699.7 (0.07) 0.021 16.499 (0.15)
Benchmark
(Le Quere, 1991) 148.6 0.879 699.2 0.021 16.523

Table V.
Natural convection,

Ra ¼ 107
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Figure 4.
Natural convection: flow
at Ra ¼ 107 using
81 £ 81

Streamlines

Iso-vorticity lines

Isotherms
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